首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5866篇
  免费   427篇
  国内免费   273篇
化学   1687篇
晶体学   32篇
力学   2563篇
综合类   23篇
数学   954篇
物理学   1307篇
  2023年   70篇
  2022年   67篇
  2021年   96篇
  2020年   139篇
  2019年   115篇
  2018年   127篇
  2017年   161篇
  2016年   204篇
  2015年   153篇
  2014年   207篇
  2013年   359篇
  2012年   294篇
  2011年   353篇
  2010年   277篇
  2009年   362篇
  2008年   334篇
  2007年   324篇
  2006年   287篇
  2005年   331篇
  2004年   240篇
  2003年   233篇
  2002年   209篇
  2001年   172篇
  2000年   144篇
  1999年   125篇
  1998年   112篇
  1997年   115篇
  1996年   78篇
  1995年   121篇
  1994年   88篇
  1993年   87篇
  1992年   58篇
  1991年   72篇
  1990年   53篇
  1989年   45篇
  1988年   65篇
  1987年   54篇
  1986年   54篇
  1985年   39篇
  1984年   31篇
  1983年   15篇
  1982年   46篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1973年   2篇
  1971年   4篇
  1970年   2篇
  1957年   2篇
排序方式: 共有6566条查询结果,搜索用时 359 毫秒
991.
Swati Mukhopadhyay 《中国物理 B》2014,23(1):14702-014702
An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered. A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.  相似文献   
992.
The present article investigates the dual nature of the solution of the magneto- hydrodynamic (MHD) stagnation-point flow of a Prandtl fluid model towards a shrinking surface. The self-similar nonlinear ordinary differential equations are solved numerically by the shooting: method. It is found that the dual solutions of the flow exist for cer- tain values of tile velocity ratio parameter. The special case of the first branch solutions (the classical Newtonian fluid model) is compared with the present numerical results of stretching flow. The results are found to be in good agreement. It is also shown that the boundary layer thickness for the second solution is thicker than that for the first solution.  相似文献   
993.
In this paper,we present a direct numerical simulation(DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number(Re = 1) in a three-dimensional straight channel flow for the first time,using the Giesekus constitutive model for the fluid.In order to generate and maintain the turbulent fluid motion in the straight channel,a sinusoidal force term is added to the momentum equation,and then the elastic turbulence is numerically realized with an initialized chaotic velocity field and a stretched conformation field.Statistical and structural characteristics of the elastic turbulence therein are analyzed based on the detailed information obtained from the DNS.The fluid mixing enhancement effect of elastic turbulence is also demonstrated for the potential applications of this phenomenon.  相似文献   
994.
A submerged turbulent plane jet in shallow water impinging vertically onto the free surface will produce a large-scale flapping motion when the jet exit velocity is larger than a critical one. The flapping phenomenon is verified in this paper through a large eddy simulation where the free surface is modeled by volume of fluid approach. The quantitative results for flapping jet are found to be in good agreement with available experimental data in terms of mean velocity, flapping-induced velocity and turbulence intensity. Results show that the flapping motion is a new flow pattern with characteristic flapping frequency for submerged turbulent plane jets, the mean centerline velocity decay is considerably faster than that of the stable impinging jet without flapping motion, and the flapping-induced velocities are as important as the turbulent fluctuations.  相似文献   
995.
996.
为分析小攻角巡航条件下吸气式高超声速飞行器上壁面的变化对其气动性能和容积的影响, 以参数化后的飞行器上壁面对称面型线为设计变量, 在飞行马赫数6.5, 飞行高度27 km, 飞行攻角为4°的条件下, 采用计算流体力学为性能分析工具, Pareto多目标遗传算法为优化设计方法, 开展了二维条件下的升阻比/容积双目标优化设计. 在此基础上, 选择典型的二维优化结果, 重构生成对应的三维构型并进行数值分析, 获得了飞行器气动性能和容积间的相互关系. 结果表明在巡航条件下, 尽管二维/三维条件下飞行器的气动参数数值有较大差别, 但在这2种条件下, 飞行器的升阻比和容积间的关系均近似呈线性反比例关系. 同时, 对于三维构型而言, 在给定容积不变的条件下, 通过改变上壁面对称面型线的形状仅能使升阻比获得较小的增量(约0.36%). 相比之下, 当给定升阻比基本不变的条件下, 飞行器容积可调空间相对较大, 约为1.93%. 此外, 计算结果还表明, 在飞行器的容积基本不变情况下, 通过调节上壁面对称面型线, 可使飞行器的俯仰力矩获得5%左右的调节空间, 且其升阻比基本不变.  相似文献   
997.
A weakly compressible SPH solver is presented for applications involving nonlinear interaction between water waves and floating bodies. A complete algorithm able to compute fully coupled viscous Fluid–Solid interactions is described. No slip boundary condition on the solid surface is enforced through a ghost–fluid technique and the global loads are evaluated through the momentum exchange between fluid and ghost particles. A dedicated algorithm is developed to manage the intersection between the free surface and the solid profile. An explicit synchronous algorithm is proposed for the full coupling between fluid and rigid bodies. Stability, convergence and conservation properties are tested on several freely floating test cases and a final validation of the full algorithm is performed for the interaction between a 2-D box and a wave packet.  相似文献   
998.
In our previous research, the modified Galerkin method was proposed as one of the most efficient methods for the analyses of convection-diffusion problems and two-dimensional viscous fluid flow problems. In this modified Galerkin method, the inertia term is considered explicitly, so only the symmetrical matrixes appear. Then an artificial viscosity is introduced through an error analysis approach to improve its accuracy and stability. In this paper, we proposed a new finite element formulation for three-dimensional incompressible viscous fluid flow analysis. This formulation (‘MS’ algorithm and ‘MSR’ algorithm) is based on the modified Galerkin method coupled with the Semi-Implicit Method for Pressure-Linked Equations. The cubic cavity flow problems were investigated for the Reynolds number of 400, 1,000, 2,000 and 3,200 using non-uniform meshes. Finally, we confirmed the effectiveness of our proposed method through the comparison with other research works.  相似文献   
999.
Haemodynamically induced stress plays an important role in the progression and rupture of cerebral aneurysms. The current work describes computational fluid dynamics (CFD), fluid–structure interaction (FSI) and computational structural dynamics (CSD) simulations in an anatomically realistic model of a carotid artery with two saccular cerebral aneurysms in the ophthalmic region. The model was obtained from three-dimensional (3D) rotational angiographic imaging data. CFD and FSI were studied under a physiologically representative waveform of inflow. The arterial wall was assumed elastic or hyperelastic, as a 3D solid or as a shell depending on the type of modelling used. The flow was assumed to be laminar, non-Newtonian and incompressible. The CFD, FSI and CSD models were solved with the finite elements package ADINA. Predictions of velocity field and wall shear stress (WSS) on the aneurysms made using CFD and FSI were compared. The CSD model of the aneurysms using complete geometry was compared with isolated aneurysm models. Additionally, the effects of hypertensive pressure on CSD aneurysm models are also reported. The vortex structure, WSS, effective stress, strain and displacement of the aneurysm walls showed differences, depending on the type of modelling used.  相似文献   
1000.
In the problems of fluid-structure interaction (FSI) the mesh updating scheme plays a key role. We have developed an adaptive mesh rezoning technique which is applicable to the three-dimensional FSI problems. In order to prevent the inversion of elements in the mesh and to maintain a well-conditioned shape for successive time-step calculations, we introduce constrained conditions of dilatational strain in the least-square form as well as the gradient of displacement vectors, in relatively small elements. By the present mesh rezoning technique, even under the large deformation of boundaries concerned, we can reduce the use of the process of mesh generation and switching of nodal values at the interboundary of time slabs. These steps require rather significant CPU time and induced projection errors of nodal values from the previous mesh to the current one. The case of collapsing tube problems shows the remarkable potential of our method. The present method is entirely general in that it can be applied to structured and unstructured meshes, effectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号